We start in ~ 15 min
We start in ~ 10 min
We start in ~ 5 min
Ensuring ecosystem-based approach principles in Marine Spatial Planning

Wednesday, 6 May 2020

DISCLAIMER: The designations employed and material presented during this event do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The ideas and opinions expressed are the speakers’ own; they are not necessarily those of UNESCO and do not commit the Organization.
Ensuring ecosystem-based approach principles in Marine Spatial Planning

Wednesday, 6 May 2020
Bio

- IOC-UNESCO Programme Specialist for Coastal Management, Marine Spatial Planning and Blue Economy
- MSPglobal Coordinator
- **Background:** Geographer, Universities of the Basque Country, Seville (ESP) and Tartu (EST)
- MSc Physical Geography, Environmental Changes and Natural Risks / Management and Planning for Coastal and Marine, University of Seville (ESP)
Objectives

• Share Ecosystem-Based Approaches (EBA) from different regions
• Discuss EBA principles in MSP
• Propose specific recommendations
Agenda

16:30 – 16:40) Introduction
(16:40 – 16:50) Ant Türkmen
(16:50 – 17:00) Shannon Hampton
(17:00 – 17:10) Luke McEachron
(17:10 – 17:20) Lisa Sousa
(17:20 – 17:30) Janica Borg
(17:30 – 18:00) Discussion
(18:00 – 18:05) Closing
Join us!

Using Slido is very easy

Just go to Slido.com

www.slido.com

and enter the event code

#EBA4MSP
ECOSYSTEM-BASED MANAGEMENT OF AQUATIC ECOSYSTEMS

What is ecosystem-based management?

Any management or policy options intended to restore, enhance or protect the resilience of the ecosystem.

Ecosystem-based management helps to protect aquatic biodiversity and the benefits that people receive from aquatic ecosystems. It involves tackling the threats facing aquatic ecosystems in an integrated way throughout the entire water system from source to sea.

Benefits of ecosystem-based management

- Increased benefits for human wellbeing from ecosystems
- Improved ability of ecosystems to stay within environmental limits
- Increased ability to adapt to change
- Improved management of uncertainty
- Increased ability to meet multiple policy objectives

www.aquacross.eu
Ant Türkmen, Turkey

Bio

- PhD in **taxonomy and ecology of marine** invertebrates
- Senior Researcher, **Ecological Research Society** (EKAD)
- Leading projects on **MPAs and Ecosystem-based planning**
- In charge of EBM, monitoring and containment plans for various sectors in line with **sustainable blue growth strategies**.
Examples from Turkey to Ecosystem Based Approach

Iskenderun Gulf Ecology and Importance of Ecosystem Based Planning &
Marine Protected Areas and No Fishing Zones of Anatolian Coasts

Ant Türkmen, PhD, Senior Researcher,
Ecological Research Society (EKAD)
Iskenderun Gulf Ecology and Importance of Ecosystem Based Planning

- A Ramsar Site and an international bird area
- A National Park
- Nesting Beaches for Sea Turtles
- Important Fishery Area
- Two Marine Terminals for International Crude Oil Pipelines
- Power plants
- Heavy Industry Plants (Iron and Steel)
- High Capacity Industrial Port
Iskenderun Gulf Ecology and Importance of Ecosystem Based Planning
Iskenderun Gulf Ecology and Importance of Ecosystem Based Planning
Iskenderun Gulf Ecology and Importance of Ecosystem Based Planning

Oil Spill Risk Analysis:
- Analysing traffic pattern and frequency
- AIS Data and port protocols
- Oil spill scenarios and models

All contingency plans are based specifically on ecological characteristics of the region.

Ecological Monitoring: 2002-Present, by Ecological Research Society (EKAD)
Marine and Coastal Protected Areas of Turkey

- Total of 17 Protected Areas
- FINIKE Seamounts SEPA is the only one without land component (No.4 in the Mediterranean Part)
STRENGTHENING THE SYSTEM OF MARINE AND COASTAL PROTECTED AREAS OF TURKEY PROJECT (2010-2014)
GÖKÖVA BAY and DATÇA-BOZBURUN PENINSULA

ÖÇK = SEPA: Special Environmental Protection Area

Ayvalık Parkı
Adaları
Tabiat
Foça ÖÇK Bölgesi
Gökova ÖÇK Bölgesi
Datça-Bozburun Bölgesi
Köyceğiz-Dalyan ÖÇK Bölgesi
Fethiye-Göcek ÖÇK Bölgesi
Six “No Fishing Zones” (NFZ) established in Gökova Bay Special Environmental Protection Area (SEPA) in 2010

- Total Area of SEPA: 827 km²
- Total Area of NFZ: 24 km² (2010)

STRENGTHENING THE SYSTEM OF MARINE AND COASTAL PROTECTED AREAS OF TURKEY PROJECT (2010-2014)
GÖKÖVA BAY and DATÇA-BOZBURUN PENINSULA

- Biology of the fish populations in the area were studied and data were collected in order to interpret the differences between the no-fishing and free zones.
- Detailed Habitat Mapping in NFZs, revealing key components such as *Posidonia oceanica* patterns.
- Underwater Visual Census (UVC) techniques by means of intensive scuba diving.
- In-situ study of physical parameters of water quality was carried out by the use of the portable equipment mounted in the research vessel.
• Sea Turtle Conservation and Monitoring studies since 1987, in all of the hot spots of the Anatolian and Cyprus Coasts.
• Ecological surveys for marine and coastal protected Areas.
• Planning, Management and Monitoring of Protected Areas.
• Development of innovative projects in Sustainable Blue Growth.
Bio

- Completed her PhD with a **multidisciplinary study on small pelagic fish stock structure** at the University of Cape Town, ZA.
- Currently **Programme Manager at IOI-SA**
- Involved in regional projects:
 - STRONG High Seas
 - Mami Wata
 - MEERWISSEN
 - Small Scale Responsible Fisheries
- Co-wrote the **Industry Code of Conduct for Responsible Fishing in South Africa**
Enhancing marine Management capacity in West, Central and Southern Africa through Training and Application

Pilot Projects in
- Côte D’Ivoire: CIAPOL
- Ghana: EPA
- Benin: MCVDD

Centres of Expertise for three tools
- CSE in Dakar: CBD EBSAs
- EPA Sierra Leone in Freetown: SoME
- IOI African Region in Cape Town: MSP
An Ecologically or Biologically Significant marine Area (EBSA) framework for the Mami Wata project

This document makes available to the signatory countries of the Abidjan Convention a guide to understand the process of describing Ecologically or Biologically Significant marine Areas (EBSAs) and helps them initiate an EBSA process. The document describes in detail the

State of the Marine Environment (SoME) reporting framework for the Abidjan Convention countries

This document describes the general approach for the development of marine assessments or State of the Marine Environment reporting (SoME) under the Mami Wata project. The methodology follows the structure and approach described in the Integrated Environmental

A Marine Spatial Planning (MSP) framework for the Abidjan Convention countries

This document is intended as a guide to assist countries of the Abidjan Convention to establish Marine Spatial Planning (MSP) process. The guide provides practical advice on the activities and series of steps required to run a successful MSP process. It frames MSP as part of
• Country-led Projects – their plan, their priorities
• Innovative learn-by-doing approach
• Developing *in situ* capacity in the three countries
• Regional capacity development through pilots
• Using the three tools for integrated ocean management and holistic approach
• Using the language of the country (and local language for stakeholder engagements)

© Rob Barnes / GRID-Arendal
Develop capacity on the application of SoME, CBD EBSAs and MSP in an IOM Framework

Shape policy frameworks

Develop tools, methods and processes for its application

Create pilot projects serving as hubs for capacity development for the region
10 Steps of Marine Spatial Planning – IOI Approach (2019 – to now)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Defining Context and Authority</td>
</tr>
<tr>
<td>Step 2</td>
<td>Obtaining Financial Support</td>
</tr>
<tr>
<td>Step 3</td>
<td>Organising Stakeholder Participation</td>
</tr>
<tr>
<td>Step 4</td>
<td>Organising the Process through Pre-Planning</td>
</tr>
<tr>
<td>Step 5</td>
<td>Analysing Current Conditions</td>
</tr>
<tr>
<td>Step 6</td>
<td>Analysing Future Conditions</td>
</tr>
<tr>
<td>Step 7</td>
<td>Developing the Spatial Plan</td>
</tr>
<tr>
<td>Step 8</td>
<td>Implementing and Enforcing the Plans</td>
</tr>
<tr>
<td>Step 9</td>
<td>Monitoring and Evaluating Performance</td>
</tr>
<tr>
<td>Step 10</td>
<td>Adapting the Spatial Planning Process</td>
</tr>
</tbody>
</table>

- Focus on Steps 1 – 5
- Use best available information & precautionary approach
- Strong emphasis on stakeholder engagement
- Workshops are essential to the approach but in between, online support is always available.
• EBSA and SoME data feed into MSP layers – e.g. zooplankton locations, turtle migratory routes, important bird areas, fish breeding areas, urban area, population, pollution outflows.
• Stakeholder engagement and input (even if not quantitative) is crucial
• Incorporating various training: Blue Solutions, SeaSketch, MARXAN
It can help to start with “easy-wins” that can be achieved in relatively short time frame - this will build stakeholder confidence in the concept of MSP.

- MSP should be a “learn-by-doing” management plan. It includes adaptive management – even in development phase.
- Include appropriate monitoring and evaluation of the implemented plan - to test whether the goals and objectives of the plan are being met.
- MSP is not a magic tool that can fix everything, it is part of an integrated ocean management plan that will include non-spatial tools too.
- Communication and meaningful engagement is key – TRUST!
Join us!

Using Slido is very easy

Just go to Slido.com

www.slido.com

and enter the event code

#EBA4MSP
Bio

- Ph.D. in interdisciplinary ecology at the University of Florida
- Applied research scientist in the Center for Spatial Analysis at the Florida Fish and Wildlife Conservation Commission in St. Petersburg
- Recognized for his exemplary applied research in Marine Sciences and excellence in Partnering with the Marine Biodiversity Observation Network.
Marine Spatial Planning from an Ecosystem-Based Management Perspective in Florida, USA

LUKE MCEACHRON
FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION
LUKE.MCEACHRON@MYFWC.COM
South Florida, USA

Largest coral reef system in the continental United States
- ~ 500 km long
- ~ 6,000 marine species
- ~ 400 maritime heritage sites and artificial reefs

6.7 million residents and $4.4 billion sales

Multiple jurisdictions and management areas
- County level
- State Parks
- National Parks (NP)
 - Biscayne NP, Everglades NP, Dry Tortugas NP
- Florida Keys National Marine Sanctuary (FKNMS)
Current Planning Activities

Florida Fish and Wildlife Conservation Commission (FWC)

- Manage fish and wildlife for long-term well-being
- Requires an ecosystem-based management approach
- Extensive monitoring and modeling programs
Current Planning Activities

Florida Fish and Wildlife Conservation Commission (FWC)

FKNMS recognized a need to re-zone existing managed areas

◦ FWC is one of many stakeholders
◦ “Existing marine zones and management plan activities designed and implemented by FKNMS in the mid-1990s are no longer sufficient to ensure long-term resource protection and ecosystem function into the future.”

(FKNMS Restoration Blueprint 2019)

https://floridakeys.noaa.gov/blueprint/
Current Planning Activities

FKNMS re-zoning and reporting needs
- GIS support
- What is the status of biological resources?
- How will new zones impact biological resources?
- Assistance with data volume

Addressing needs
- Form strategic partnerships
- Promote data standards and visualization
- Create models that inform spatially explicit ecosystem dynamics

Illustration courtesy of F. Chavez/K. Lance (Monterey Bay Research Institute/MBARI)
Partnerships

Promotes systematic, long-term observation of marine biology and ecosystems across taxonomic, spatial and temporal scales.

- Improves our understanding of changes and connections between marine biodiversity and ecosystem functions.
- Consists of regional networks of scientists, managers, end-users
- Thematic node within the Group on Earth Observations (GEO) Biodiversity Observation Network; US MBON supported by NOAA Integrated Ocean Observing System (IOOS) Office

marinebon.org
Data Visualization

Working within MBON allowed us to:

- Combine complex spatially explicit information via interactive data portals
- Combine in situ and satellite data across scales
 - 2010 was an unusually cold year, why?
 - Loop current was ‘restricted’
 - High coral mortality
- Consider regional factors and time dynamics

marinebon.org
Ecosystem Models

Contrast management zoning strategies and identify indirect trophic effects

Ecopath with Ecosim and Ecospace
- Accessible ecosystem model with active user base
- Aggregate species into trophic groups
- Requires diets, consumption, production, biomass, and catch
- New capabilities integrate GIS and ecosystem modeling (Steenbeek et al. 2013)
- Predict species distributions in monthly time steps in response to dynamic environmental factors (chlorophyll a, temperature), and management zones
- Identify data gaps and research priorities
 - E.g., movement and effort

Steenbeek et al. (2013) Ecological Modelling 263, 139-151.
Moving Forward

Space-time data visualizations and ecosystem models are technical solutions to informing marine spatial planning from an ecosystem perspective

◦ Data portals, models, visualizations are fluid
◦ Combining data is time intensive

Sustaining an ecosystem-based management perspective in MSP

◦ Maintain feedback from an effective network of managers, scientists, and end-users to understand needs
 ◦ Follow-up, technical workshops, delegate travel funds, etc.
◦ Promote data standards and best practices
 ◦ Quality control, metadata, access, ownership, and attribution
Resources

Luke McEachron, Florida Fish and Wildlife Conservation Commission
Luke.McEachron@myfwc.com

Marine Biodiversity Observation Network
Marinebon.org

Florida Keys National Marine Sanctuary Restoration Blueprint
Floridakeys.noaa.gov/blueprint
Bio

- PhD in **Environmental Science and Engineering**
- Researcher at the **Centre for Environmental and Marine Studies (CESAM)** and **University of Aveiro**
- Exploring the potential of using **ecosystem services knowledge to inform policy and decision-making** in the context of complex socio-ecological systems
- Coordinator of the **Strategic Environmental Assessment of the Situation Plan**
- involved in several **research and knowledge transfer projects related with environmental governance**, integrating both natural and social sciences:
 - PERICLES
 - SIMAtlantic
Ecosystem-based approach principles in MSP

A reflection on the MSP process in Portugal

Lisa P. Sousa

MSPglobal Online Seminar | 6 May 2020
• Approved in December 2019 by the Resolution of the Council of Ministers no. 203-A/2019
• Covers the entire national maritime space: the maritime space adjacent to the mainland and archipelagos, including the continental shelf beyond 200nm
• Single document, allowing for a holistic and integrated view of the national maritime space
• Process articulated between DGRM, DROTA and DRAM
• Strategic Environmental Assessment, in parallel with the development of PSOEM
• Ecosystem-based approach
takes into account the complex and dynamic nature of ecosystems

• Adaptive management
takes into account the dynamics of ecosystems and the evolution of knowledge and activities

• Integrated, multidisciplinary and cross-cutting management
coordination and compatibility of MSP with economic, social, environmental and land-use development policies; appropriate consideration of the public and private interests; coherence between MSP and land-use planning, particularly in coastal zones

• Precautionary approach
the absence of scientific knowledge will not prevent appropriate measures being taken regarding the ecological sustainability of marine ecosystems

• Subsidiarity
planning decisions are taken at the appropriate hierarchical levels while respecting the specific competences of the governments of the autonomous regions

• Promoting collaboration for responsible ocean governance
through cooperation with key partners at regional and international level to strengthen the ocean governance framework
Uses and activities to be developed under a private use permit

- Aquaculture
- Renewable energies
- Submarine cable and pipeline
- Multi-purpose platforms
- Specific sites for dredge material
- Scientific research
- Artificial reefs
- Tourism
- Underwater natural and cultural heritage
Situation Plan | Uses and activities

Oceanographic conditions
- bathymetry
- waves, tides
- currents

Potential areas for uses and activities

Administrative & legal constraints
- nature conservation
- military and safety
- ports and maritime corridors

Free use
- fisheries
- public use
Situation Plan | Stakeholders engagement

w w w. p s o e m . p t
Situation Plan | Buffer zone

- 1.5nm strip along the coastline of the Mainland
- Safeguard the common uses associated with small-scale coastal fishing, recreation and leisure activities
- Reduce visual impacts and contribute to the good environmental status
- Not possible to install fixed floating platforms or structures that are not related with recreation, sports or tourism
- Aquaculture (fish production) is also excluded
Situation Plan | Uses and activities sheets

- Characterization of the use/activity
- Summary of the existing situation and expected evolution
- Identification of potential areas for development
- Good practices, compatibility with other uses, administrative and legal constraints
- PSOEM’s contribution to the implementation of the National Ocean Strategy 2013-2020
- Updated as the potential area becomes occupied, through the attribution/termination of a private use permit, approval of allocation plans, as scientific and technological evolution contributes with new knowledge that advises the use of different practices
SEA | Critical factors for decision-making

1. ENVIRONMENTAL STATUS
 01 Ecosystem services
 02 Environmental and water body status
 03 Natural heritage
 04 Cultural heritage

2. BLUE GROWTH AND DEVELOPMENT
 01 Sustainable economic development
 02 Sustainable use of resources

3. RISK AND CLIMATE CHANGE
 01 Technological risks
 02 Natural risks
 03 Climate change

4. DEFENCE AND SURVEILLANCE
 01 Monitoring and surveillance of maritime activities

5. KNOWLEDGE, SCIENTIFIC & TECHNICAL CAPACITY
 01 Scientific & technical knowledge
 02 Technical capacitation
 03 Literacy

6. COOPERATION
 01 Cross-border cooperation and collaboration
 02 National and regional cohesion
 03 Institutional cooperation
Sea Pressures on the Marine Environment

Fernandes et al., 2020. Mapping the Future: Pressures and Impacts in the Portuguese MSP

- Physical disturbance to seabed
- Input of anthropogenic sound
- Physical loss
- Disturbance of species
- Changes to hydrological conditions
- Input of other forms of energy
- Input of litter
- Input of other substances
- Input or spread of non-indigenous species
- Input of nutrients
- Extraction of, or mortality/injury to, wild species
- Input of organic matter
- Input of microbial pathogens
- Input of waste
- Loss of, or change to, natural biological communities (...
- Input of genetically modified species (...

- Aquaculture
- Cables, ducts and marine outfalls
- Deep-sea mining
- Exploration of fossil fuels
- Non-metallic mining
- Tourism and recreation
- Dredging disposal
- Artificial reeds and structures disposal
- Geological storage of carbon
- Marine natural heritage
- Multi-use offshore platforms
- Marine biotechnology
- Marine cultural heritage
- Renewable energies
- Scientific research

MSFD
Conservation values on marine Natura 2000:
• Habitats
• Species

Pressures for which measures were proposed:
• Physical loss and disturbance
• Introduction of non-indigenous species
SEA | Potential impacts on Natura 2000

- influence distance radius assigned to each pressure and use/activity

Physical loss - local
Input of nutrients – 1km
Input of litter – 20 km
Potential impacts on Natura 2000

Degree of exposure

Interaction between pressure and natural values

<table>
<thead>
<tr>
<th>PRESSÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perturbação física do fundo marinho (temporária ou reversível)</td>
</tr>
<tr>
<td>Perda física devido a modificação permanente do substrato, da morfologia dos fundos ou da extração de materiais do leito marinho</td>
</tr>
<tr>
<td>Alterações das condições hidrológicas</td>
</tr>
<tr>
<td>Introdução de nutrientes - fontes difusas, fontes potenciais, deposição atmosférica</td>
</tr>
<tr>
<td>Introdução de matéria orgânica - fontes difusas e fontes pontuais</td>
</tr>
<tr>
<td>Introdução de outras substâncias (ex: substâncias sintéticas, substâncias não sintéticas, radionucléidos) - fontes difusas, fontes pontuais, deposição atmosférica, episódios extremos</td>
</tr>
<tr>
<td>Introdução de resíduos (resíduos sólidos, incluindo microplásticos)</td>
</tr>
<tr>
<td>Introdução de som antropogénico (impulsivos, contínuo)</td>
</tr>
<tr>
<td>Introdução outras formas de energia (incluindo campos eletromagnéticos, luz e calor)</td>
</tr>
<tr>
<td>Introdução de microbíos patogénicos</td>
</tr>
<tr>
<td>Introdução de espécies não indígenas</td>
</tr>
<tr>
<td>Introdução de espécies geneticamente modificadas e translocação de espécies indígenas</td>
</tr>
<tr>
<td>Perda ou alteração de comunidades biológicas naturais devido ao cultivo de espécies animais ou vegetais</td>
</tr>
<tr>
<td>Perturbação de espécies (ex: onde se reproduzem, repousam e se alimentam) devido à presença humana</td>
</tr>
<tr>
<td>Extração ou mortalidade/lesão de espécies selvagens (através da pesca comercial ou recreativa e de outras atividades)</td>
</tr>
</tbody>
</table>

LEGENDA

- **Habitat**: 1110, 1170, 8330
- **Areas classified**: SC
- **Activities potential**: Agriculture
- **Pression**: Perturbação física e introdução de matéria orgânica e nutrientes

INTERAÇÃO ENTRE PRESSÃO E O HABITAT/ESPÉCIE

<table>
<thead>
<tr>
<th>INTERAÇÃO</th>
<th>1110</th>
<th>1170</th>
<th>8330</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arquipélago transatlântico e pescas marítimas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Físicos

- A: Low
- B: Medium
- C: High
- D: Unlikely

Biológicos

- A: Low
- B: Medium
- C: High

Sources: N2K (2017) e Aloncle et al. (2018)
• Significant impact [E]
 or
• Unknown interaction [D]

• The Situation Plan already included mitigation measures for most significant impacts

• For the remaining significant impacts additional mitigation measures were identified, based on documents from European legislation or conventions ratified by Portugal (e.g. OSPAR, ACCOBAMS)

• Complementary mitigation measures have been established for cases where the interaction between pressure and natural values is unknown
Changes to the Situation Plan

- The plan is automatically amended upon approval of allocation plans or issue/termination of private use permits
- Whenever there are changes to the environmental conditions (MSFD, WFD)
- New laws or regulations, in particular plans and programmes which require an integrated planning coordination
- New administrative and legal restriction

Revision

- May be revised five years after entering into force
The successful implementation of the Situation Plan will not only depend on the entities responsible for its elaboration - DGRM, DROTA and DRAM - but also on the cooperation between the various entities, within their respective competencies, and on the effectiveness of the established institutional dialogues.
Ensuring EBA principals in MSP | Challenges

- Limited knowledge regarding the complexity and state of marine ecosystems, and the impact of certain activities
- Cumulative impact assessment of existing and potential activities; additive, synergistic or antagonistic effect of stressors on one another; conservation state, sensitivity or recovery rate
- Coherent strategy for marine data collection, organization and mapping
- Ecosystem services and how are they affected by MSP
COPING TEAM involved in the SEA process:

Maria da Luz Fernandes, Adriano Quintela, Márcia Marques, Johnny Reis, Fátima L. Alves
Janica Borg, Finland, EU

Bio

- Marine biologist and scientific diver
- Policy Coordinator for Marine Protection and Spatial Planning for WWF European Policy Office
- Long experience in international decision making on environmental protection in the Baltic Sea
- Currently focuses on the challenges between marine protection and other sea use (e.g. Energy vs. Fisheries)
- Aims to find a common language between all stakeholders by improving the linkages in between marine decision making and true protection provided to the marine environment
Is there space for nature in marine spatial plans?

Janica Borg, WWF European Policy Office

MSPglobal Webinar
6 May 2020
January 2020: WWF Position Paper to support and guide countries and regions to produce **ecosystem based** marine spatial plans.

WWF’s vision is to ensure an ecosystem-based approach to marine spatial plans adopted by European Union (EU) Member States in all EU marine waters. This safeguards important ecological areas, reduces negative pressure on the marine ecosystem as a whole and ensures that there is space for nature in the marine spatial plans. This approach must apply within and across EU Member States’ borders, delivering effective nature conservation and securing ocean resilience in light of the impacts of climate change, as well as supporting a Sustainable Blue Economy.

Main asks:

- Measurable goals
- Cumulative impact assessments for the entire lifespan of new activities
- EIA & SEA
- Vulnerability assessments
- Precautionary principle
- **Sustainable Blue Economy**: Support financial flow towards sustainable solutions
- **Process**: transparent, iterative, including all stakeholders, proper cross-border consultation

WWF’s vision is to ensure an ecosystem-based approach to marine spatial plans adopted by European Union (EU) Member States in all EU marine waters. This safeguards important ecological areas, reduces negative pressure on the marine ecosystem as a whole and ensures that there is space for nature in the marine spatial plans. This approach must apply within and across EU Member States’ borders, delivering effective nature conservation and securing ocean resilience in light of the impacts of climate change, as well as supporting a Sustainable Blue Economy.

Must align with other marine legislation – and there’s a LOT!
Danish waters: bottom trawling and vulnerable habitats

porpoises & reefs

porpoises

bubbling reefs

birds

reefs

porpoises

reefs
THE RESULT

Minimum effort model:
While 18% is protected, only 2% is protected against bottom trawling, edge effects, etc.
Questions at EU level

- Will natural values get **equal treatment** with the other sectors? Will economic interests override the need to ensure space for nature?
- Will the **cross-border consultations** be effective or watered down to paper exercises?
- How will the national plans reflect the other interests of the **ministries in charge of the process**? Will EBA be adhered to regardless?
The EU Commission will present its Offshore Wind strategy in October 2020, before the deadline of national MSP.
Thank you!

@janica_borg
jborg@wwf.eu
Discussion!

www.slido.com

Event code: #EBA4MSP
Thank you all!

Next event

Prochain événement